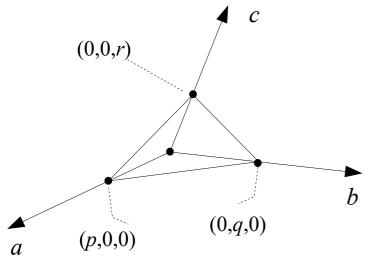
Point groups and morphological symmetry. Introduction to the stereographic projection

Didactic material for the MaThCryst schools

Massimo Nespolo, Université de Lorraine, France massimo.nespolo@univ-lorraine.fr

Lattice planes and Miller indices

Planes passing through lattice nodes are called "rational planes"



Equation of the plane: x'/pa + y'/qb + z'/rc = 1 *

Define: x = x'/a; y = y'/b; z = z'/c

Equation of the plane: x/p + y/q + z/r = 1

(qr)x + (pr)y + (pq)z = pqrhx + ky + lz = m

Making *m* variable, we obtain a *family* of lattice planes, (*hkl*), where *h*, *k* and *l* are called the Miller indices.

First plane of the family (hkl)for m = 1hx + ky + lz = 1

Intercepts of the first (m = 1) plane of the family (hkl) on the axes p = pqr/qr = m/h = 1/hq = pqr/pr = m/k = 1/kr = pqr/pq = m/l = 1/l

Largest common integer factor for $p,q,r=1 \rightarrow$ the plane shown is the first one for the chosen inclination passing through lattice node on *all* the three axes

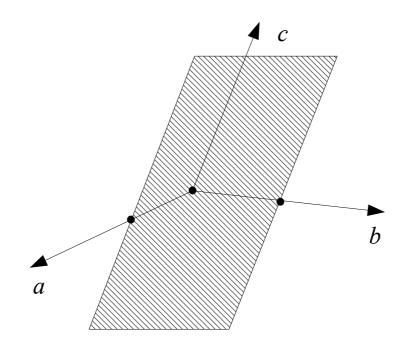
The values h, k and l are called the Miller indices of the lattice plane and give its orientation.

All lattice planes in the same family have the same orientation $\rightarrow (hkl)$ represents the whole **family of lattice planes**.

^{*} https://mathemerize.com/intercept-form-of-a-plane/

Why the *reciprocal* of the intersection (1/p) rather than the intersection (p) itself?

Consider a plane parallel to an axis – for example c



What is the intersection of this plane with the axis c? ∞

What is the *l* Miller intersection of this plane? $1/\infty = 0$

Example: family (112) in a primitive lattice

Intercepts of the first plane of the family:

on *a*: 1/1

on **b**: 1/1

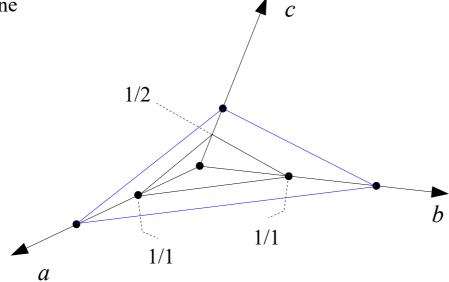
on *c*: 1/2

Intercepts of the second plane of the family:

on *a*: 2/1

on **b**: 2/1

on c: 2/2



Example: family (326) in a primitive lattice

Intercepts of the first plane of the family:

on *a*: 1/3

on **b**: 1/2

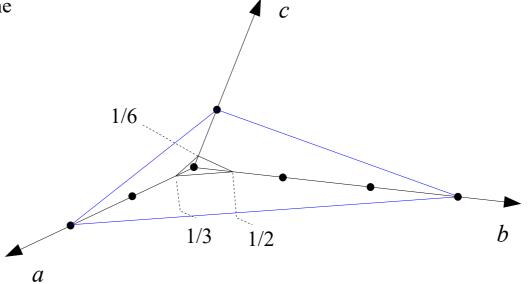
on *c*: 1/6

Intercepts of the sixth plane of the family:

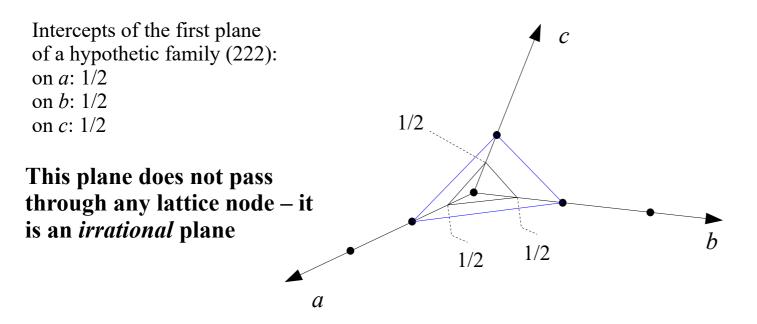
on *a*: 6/3

on **b**: 6/2

on *c*: 6/6



Miller indices for a primitive lattice are relatively prime integers

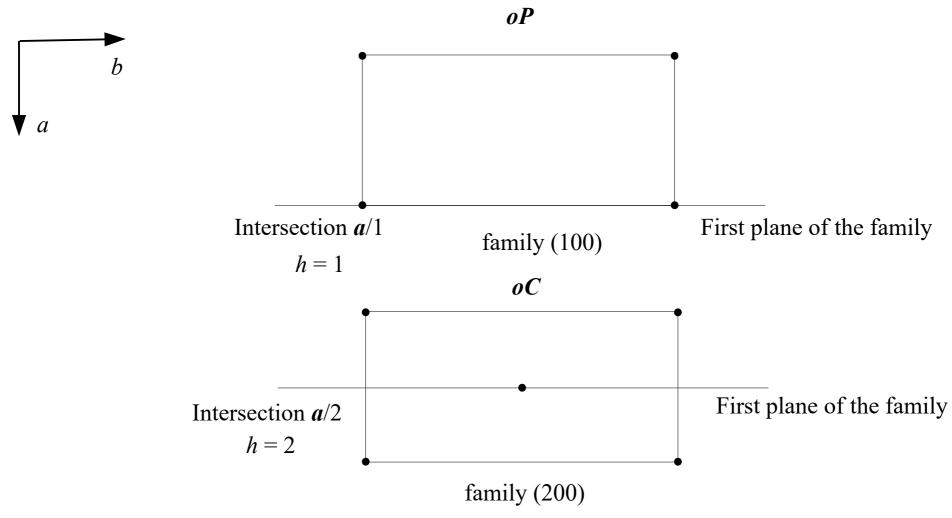


The first rational plane of this family has intercepts:

on *a*: 1/1 on *b*: 1/1 on *c*: 1/1

In a primitive lattice, the Miller indices of a family of lattice planes are relatively prime integers: (111)

Miller indices for different types of lattice: (h00) in oP and oC (projection on ab)



In morphology, we do not see the lattice and thus the Miller indices of a face are usually relatively prime integers

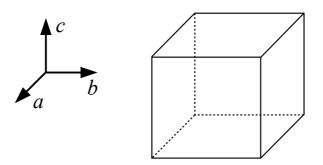
http://dx.doi.org/10.1107/S1600576715011206

The concept of form: set of faces equivalent by symmetry

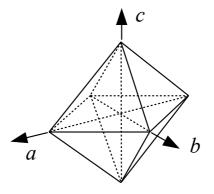
Example in the cubic crystal system

Form {100}: the cube

Form {111}: the octahedron



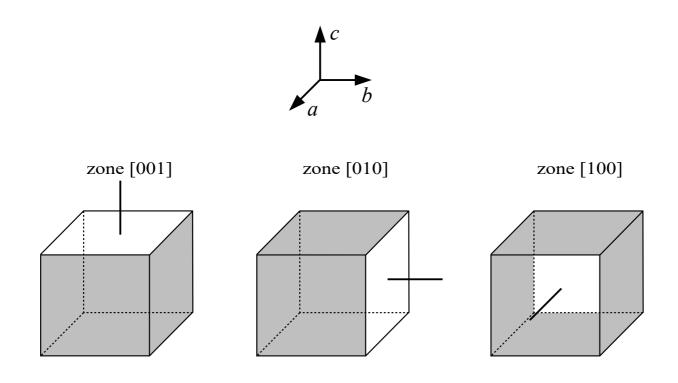
Multiplicity 6



Multiplicity 8

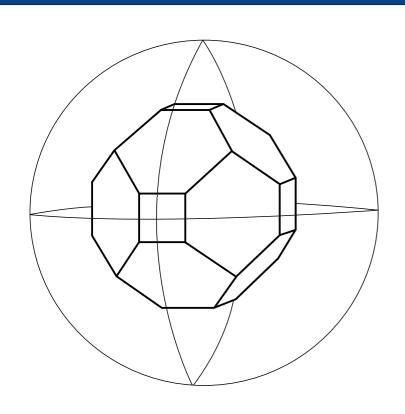
Zone: set of faces whose intersection is parallel to a same direction, called the zone axis

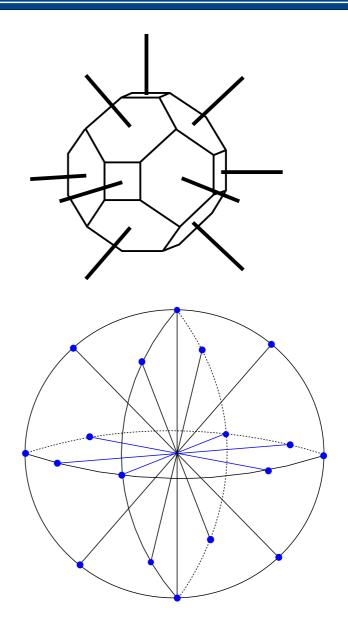
Example in the cubic crystal system



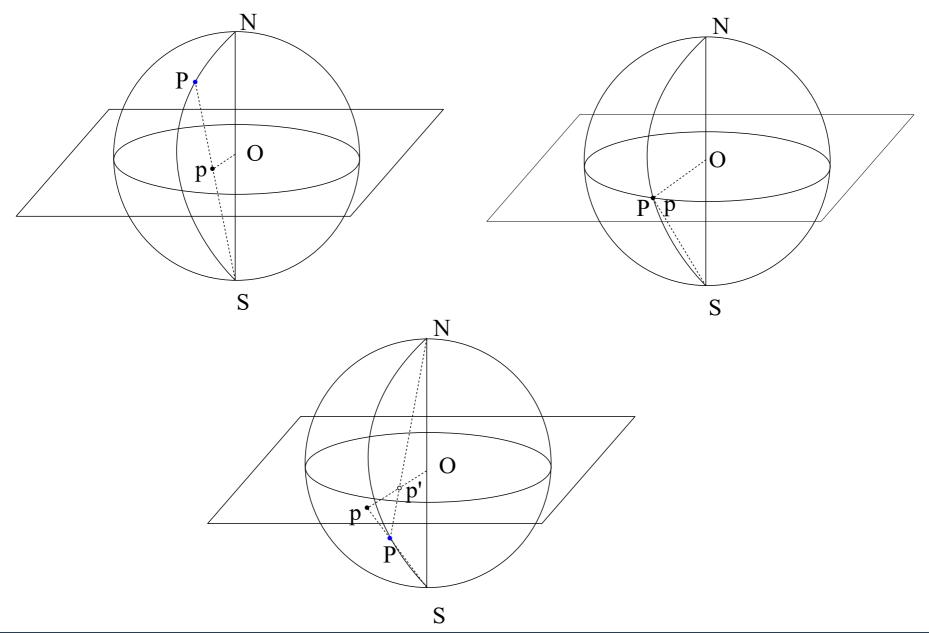
The stereographic projection: how to get rid of accidental morphological features of a crystal

Spherical projection and spherical poles

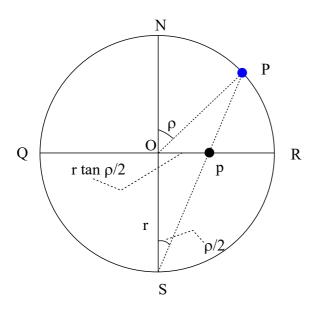


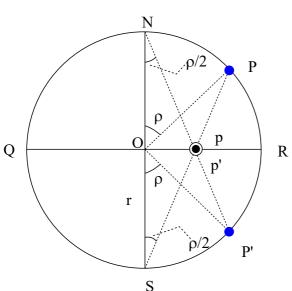


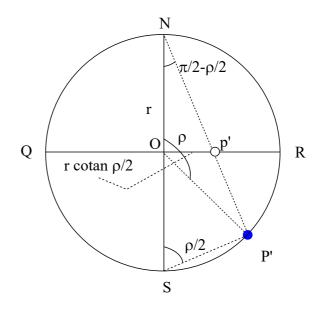
Building the stereographic projection: from the spherical poles (P) to the stereographic poles (p, p')

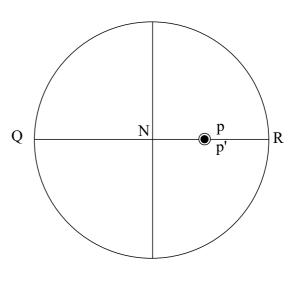


Building the stereographic projection: from the spherical poles (P) to the stereographic poles (p, p')

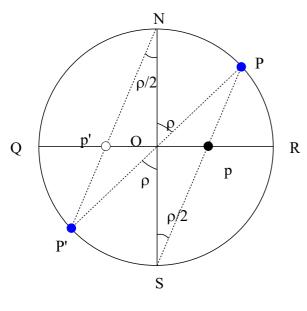


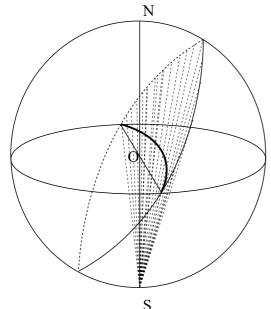


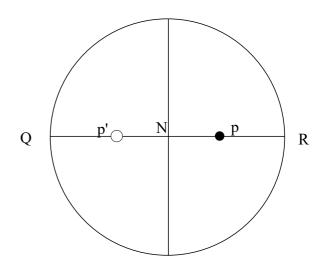


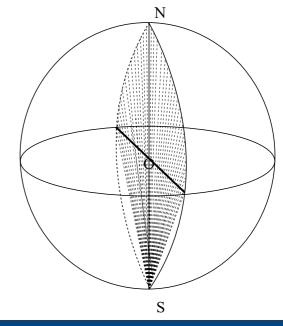


Stereographic projection: poles and symmetry planes

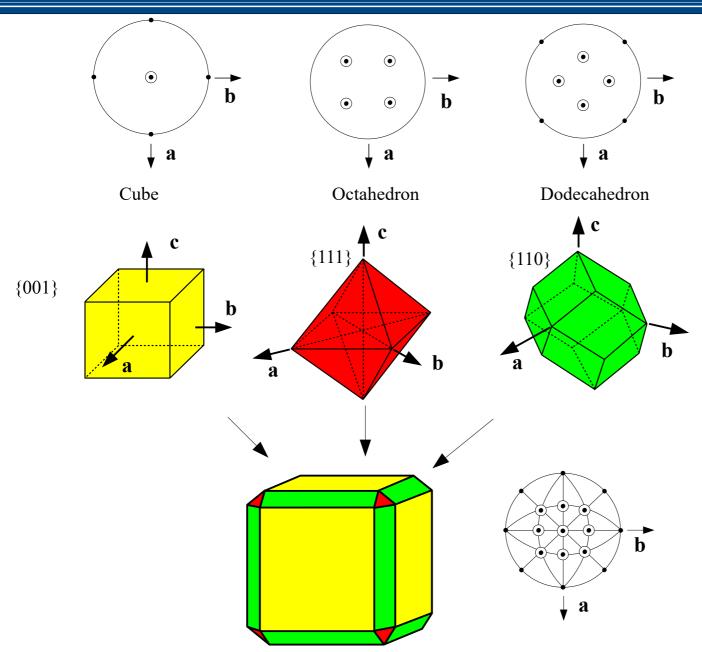




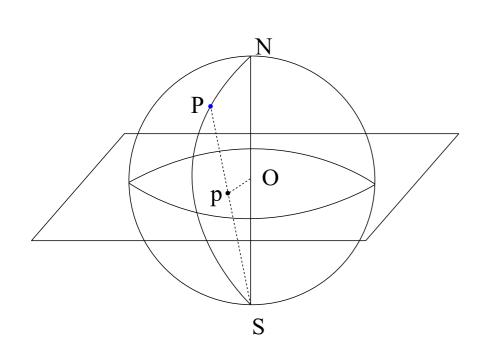




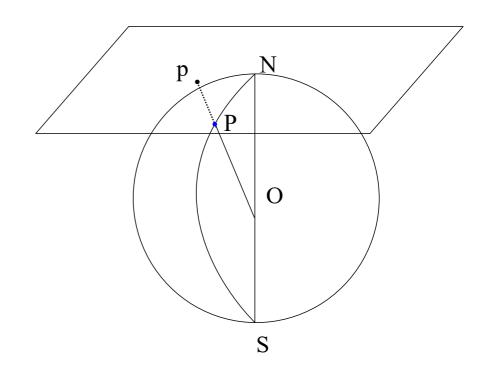
Example of decomposition of the morphology of a crystal



Stereographic vs. gnomonic projection



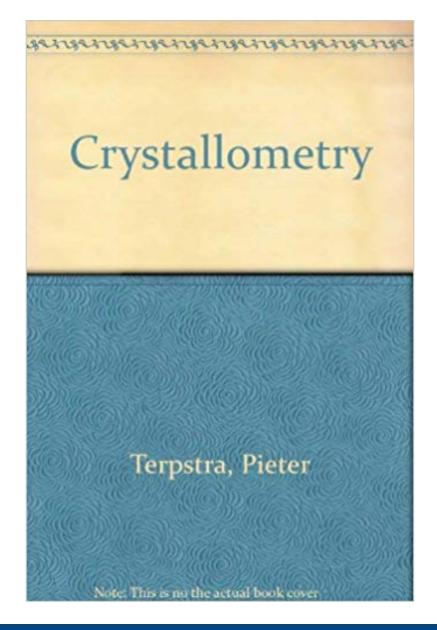
Stereographic projection



Gnomonic projection

Be careful - some textbooks exchange the two terms!

The most detailed book about stereographic and gnomonic projections of crystal



Site-symmetry groups (stabilizers) and Wyckoff positions of point groups

Let P be a crystallographic (thus finite) point group and X a point in space.

The finite set of points $\{PX\} = \{X, X', X'', \dots\}$ is the orbit of X under the action of P.

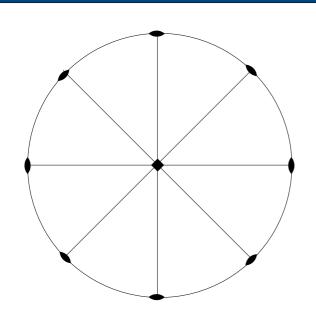
A subgroup S of P (S \subset P, possibly trivial, *i.e.* S = 1) leave X invariant, *i.e.* SX = X

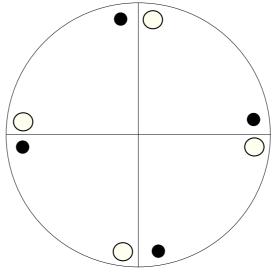
S is called the site-symmetry group (or stabilizer) of X.

Points whose site-symmetry groups S are conjugate under P belong the same Wyckoff position

The number of points obtained as $\{PX\}$ is the multiplicity M of the orbit, which is equal to the index of S in P: M = |P|/|S|

Site-symmetry groups (stabilizers) and Wyckoff positions of point groups





Coordinates

$$xyz, \overline{yxz}, \overline{xyz}, y\overline{xz}, xyz, y\overline{xz}, xyz, yxz$$

$$S = \{1\}, M = 8$$

General position

$$S = \{1\}, M = |P|$$

Coordinates

$$xx0, \overline{xx}0: S = \{1,2_{[110]}\}\$$

 $x\overline{x}0, \overline{x}x0: S = \{1,2_{[1\overline{1}0]}\}$

$$S = \{...2\}, M = 4$$

Special position

$$S \supset \{1\}, M = |P|/|S|$$

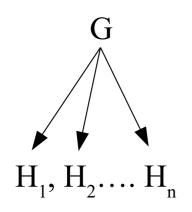
 $\forall p_i \in P$

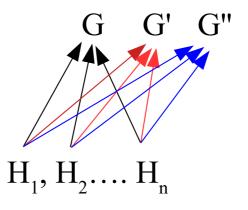
 $p_i 1 p_i^{-1} = 1$

 $p_{i}2_{[110]}p_{i}^{-1} = \{2_{[110]}, 2_{[1\overline{1}0]}\}$

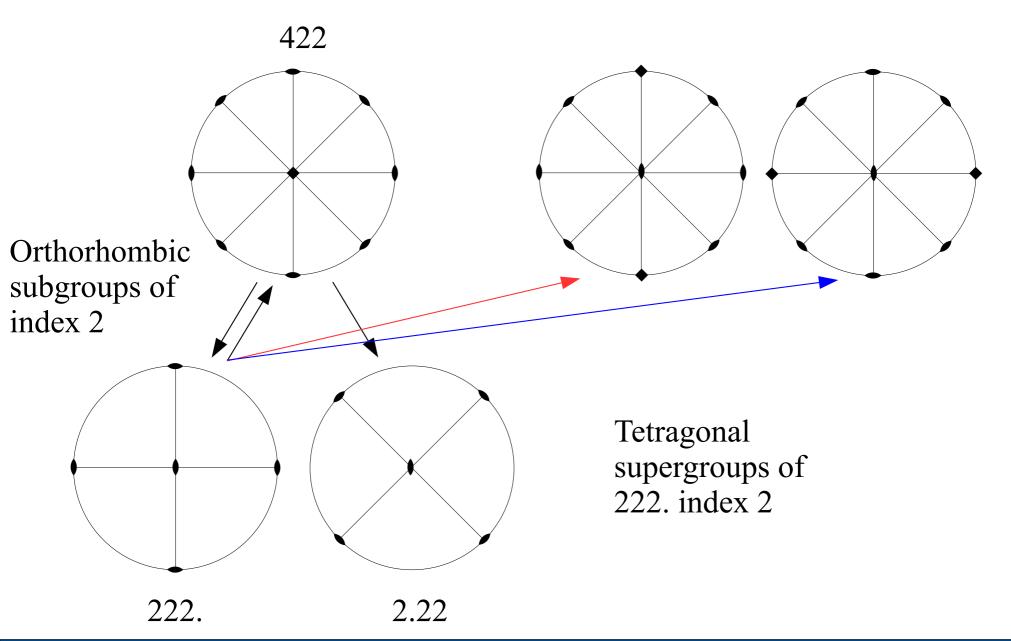
Subgroups vs. supergroups: to remove symmetry operations is easier than to add them

$$G \supset H$$
 $i = |G|/|H|$



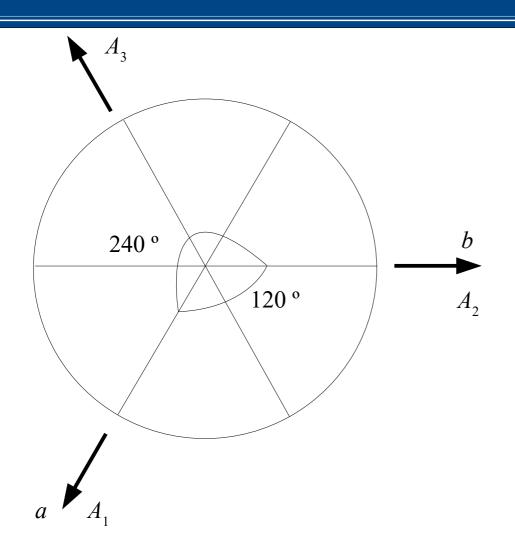


To remove symmetry operations is easier than to add them



Indexing crystals of the hexagonal family: Bravais-Miller indices

Hexagonal axes: Bravais-Miller indices



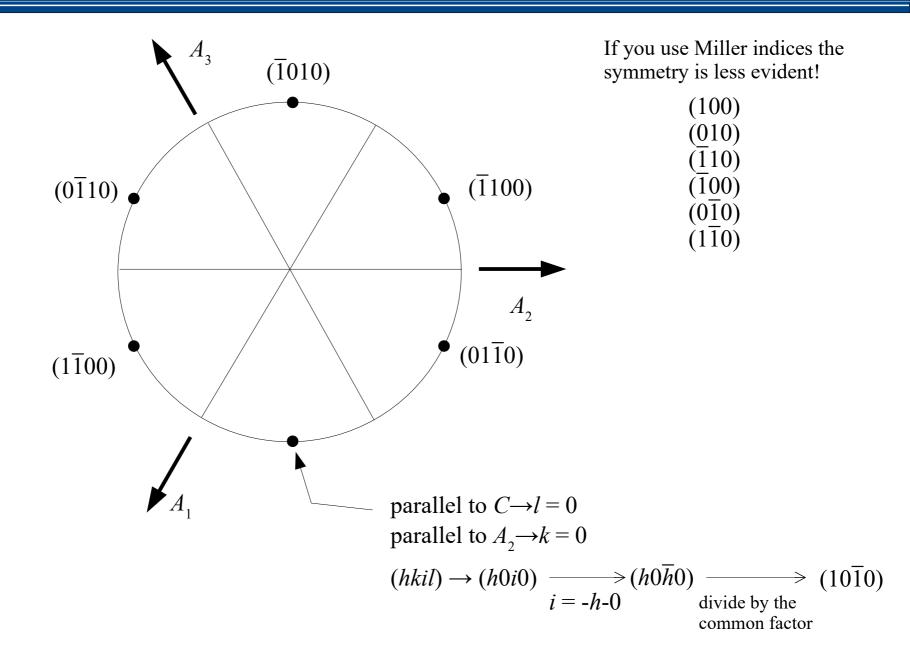
$$abc \rightarrow A_1A_2A_3C$$

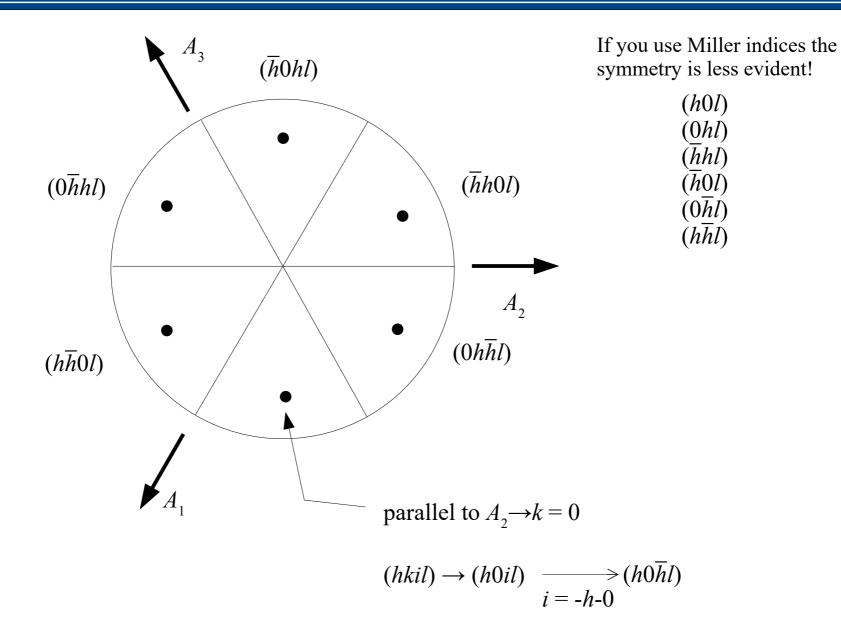
$$hkl \rightarrow hkil$$

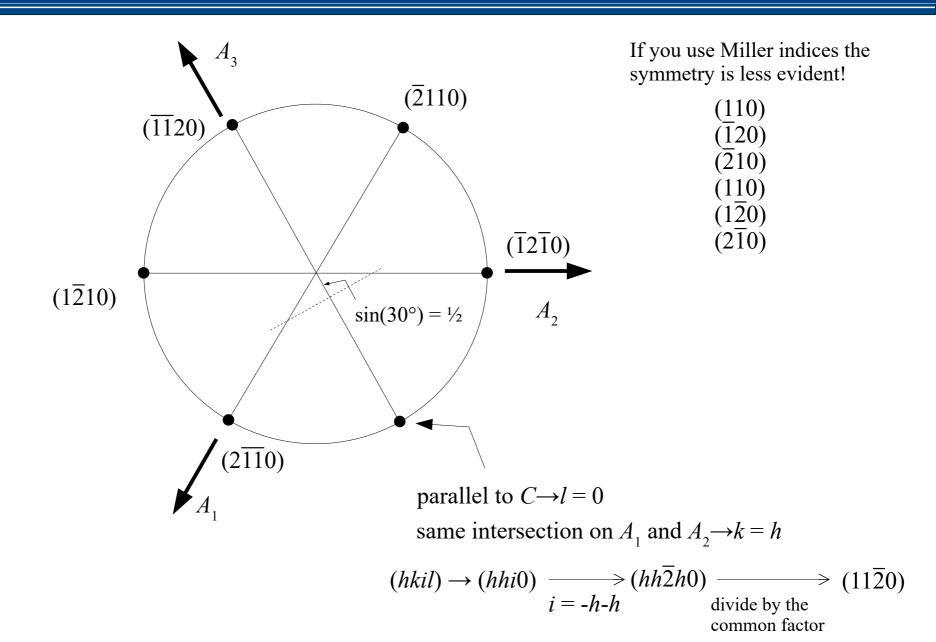
Miller indices Bravais-Miller indices

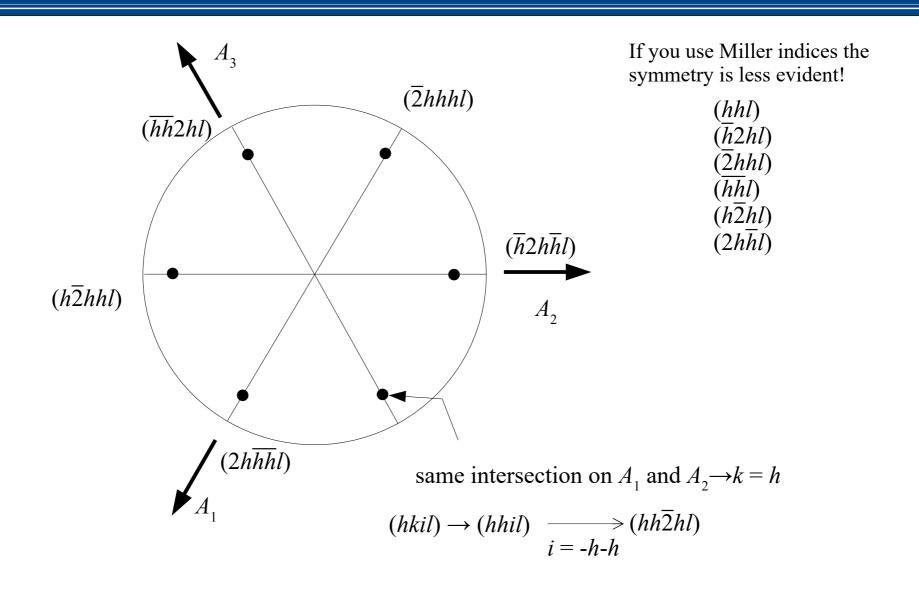
$$\mathbf{A}_3 = -\mathbf{A}_1 - \mathbf{A}_2$$
$$i = -h - k$$

$$i = -h-k$$

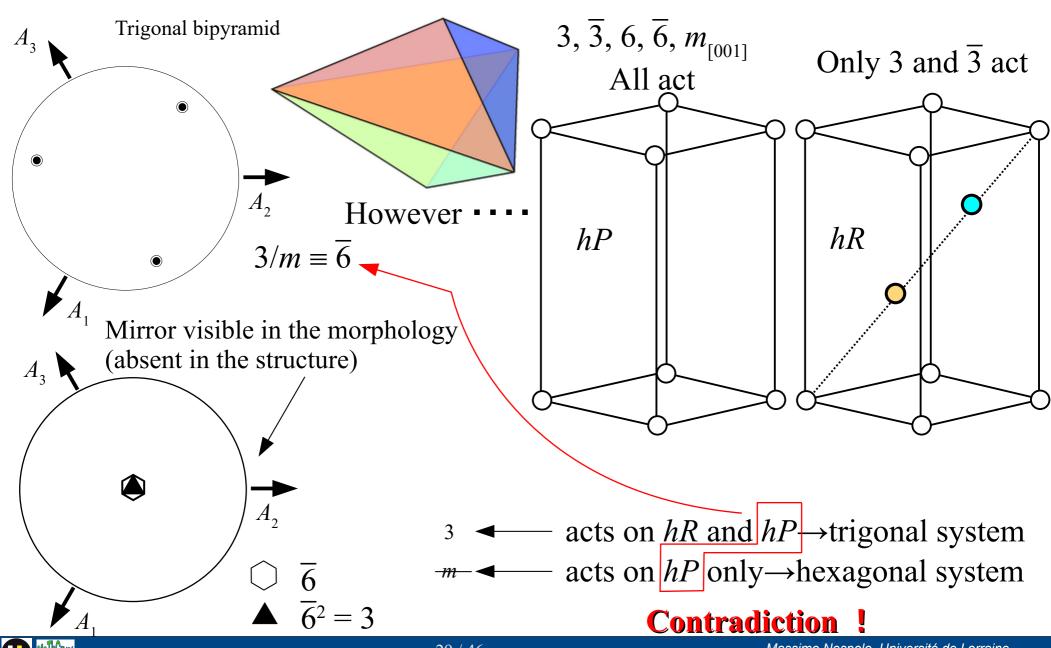








We you don't see 3/m in crystallography?



Weber indices

For trigonal and hexagonal crystal, an extension to a four-axes axial setting exists also for lattice directions, known as the **Weber indices**. The Weber indices of the direction perpendicular to a lattice plane are the same as the Bravais-Miller indices of that plane.

Let A_1, A_2, A_3, C be the four hexagonal axes, and let be *uvw* and *UVTW* the indices of a direction with respect to A_1, A_2, C or A_1, A_2, C respectively. The relations between *uvw* and *UVTW* are:

$$u = 2U+V$$
; $v = U+2V$; $w = W$
 $U = (2u-v)/3$; $V = (2v-u)/3$; $T = -(u+v)/3$.

The relation T = -U-V holds for U and V but **not** for u and v, whereas for the Bravais-Miller indices the addition of the third axis does not modify h and k so that the relation i = -h-k is applied **directly**. For this reason, the Bravais-Miller indices are widely used in crystallography, whereas the Weber indices are more used in fields like electron microscopy and metallurgy but seldom in crystallography.

Miller indices	Bravais-Miller indices	Perpendicular direction	Perpendicular direction (Weber indices)
(hkl0)	(hki0)	[2h+k,h+2k,0]	[hki0]
Ex. (100)	$(10\overline{10})$	[210]	$[10\overline{10}]$
Ex. $(2\overline{1}0)$	$(2\overline{11}0)$	[100]	$[2\overline{1}10]$

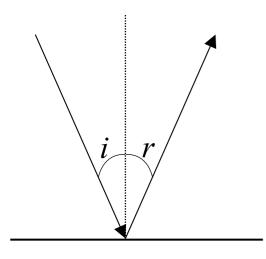
With the exception of [0001] and [UVT0], the Weber indices correspond to a mixture of direct and reciprocal space, which should be avoided.

https://doi.org/10.1107/S1600576718007033

Diffraction and Laue indices

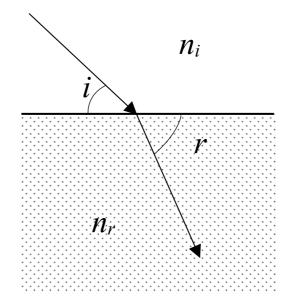
Reminder

Reflection

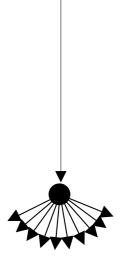


Refraction

$$\frac{\sin i}{\sin r} = \frac{n_r}{n_i}$$

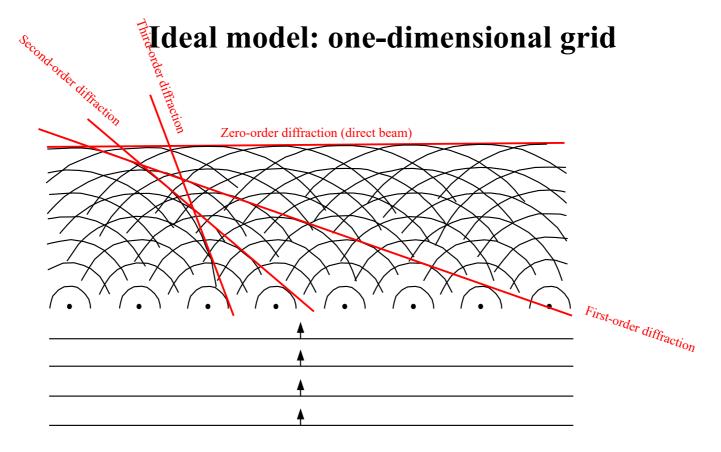


Scattering



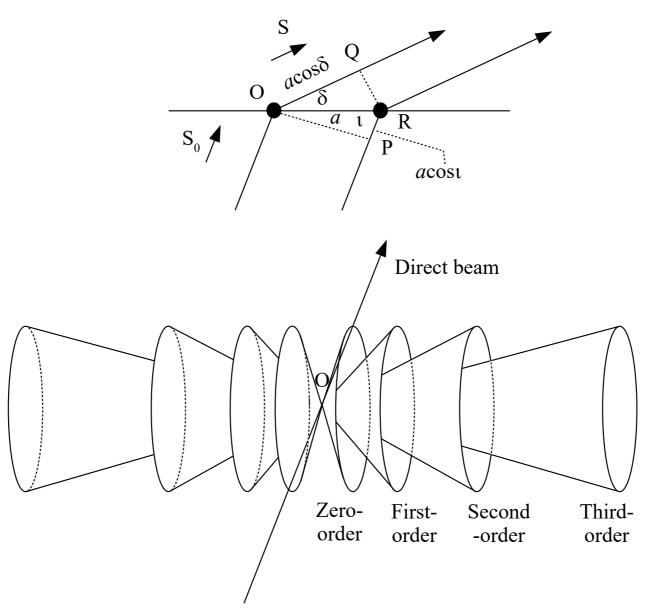
Diffraction: constructive interference of (elastically) scattered waves

A hyper-simplified view at diffraction phenomenon

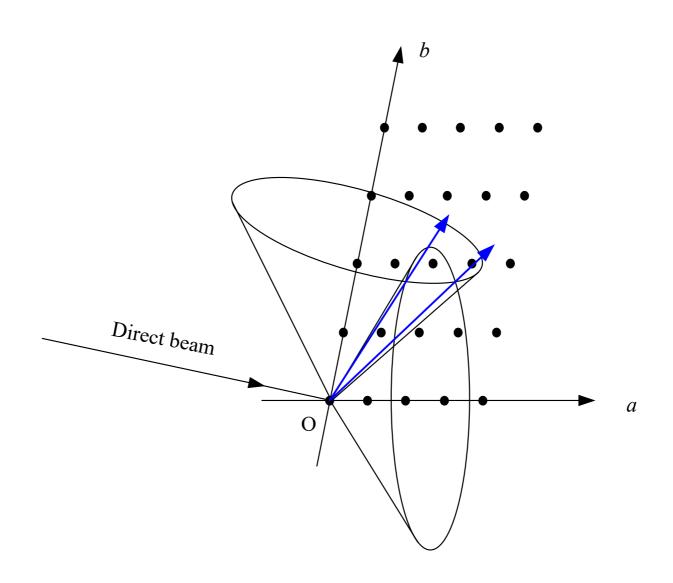


Every point of the grid is the source of a spherical wave. Waves which differ by an integer number of wavelengths interfere positively, resulting in diffracted waves. Waves from neighbour points which differ by n wavelengths result in the n-th order diffraction.

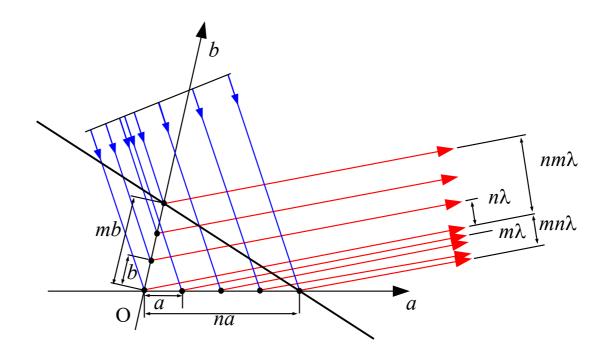
One-dimensional diffraction



Two-dimensional diffraction

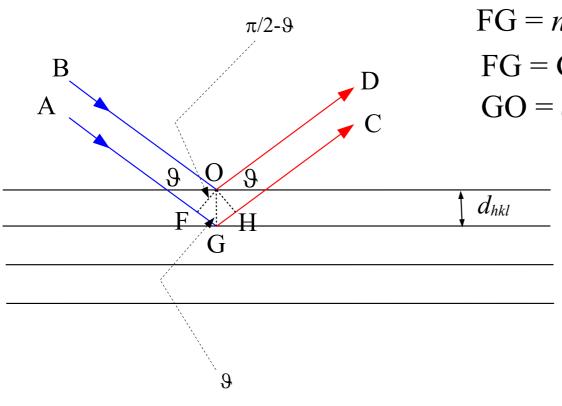


Interpreting diffraction as "reflection"



Bragg's law

Path difference of BD and AC: FGH



Condition for positive interference

$$FGH = n\lambda$$

$$FG = n\lambda/2$$

$$FG = GOsin\vartheta$$

$$GO = d_{hkl}$$

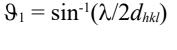
$$n\lambda/2 = d_{hkl}\sin\theta_{hkl}$$

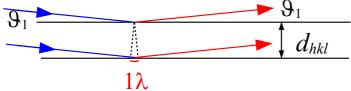
$$n\lambda = 2d_{hkl}\sin\theta_{hkl}$$
A Bragg's law

n-th diffraction order

Diffraction order (interpreted as "reflection")

First order





Third order

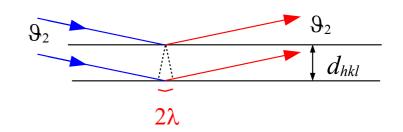
$$9_3 = \sin^{-1}(3\lambda/2d_{hkl})$$

$$9_3$$

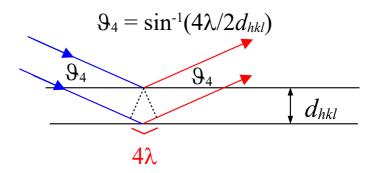
$$d_{hkl}$$

Second order

$$\vartheta_2 = \sin^{-1}(2\lambda/2d_{hkl})$$



Fourth order



Physical limit $|\sin(\vartheta)| \le 1$

Diffraction order: the output from a black-box software

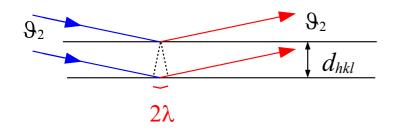
4													
h	k	l	n	d(Å)	F	29	h	k	l	n	d(Å)	F	29
1	0	0	1	7.675267	21.6095	5.29693	1	-1	0	1	5.957833	0.455688	6.82546
2	0	0	2	3.837633	64.8796	10.60522	2	2 -2	0	2	2.978916	152.06	13.67528
3	0	0	3	2.558422	60.0323	15.93645	3	-3	0	3	1.985944	2.03328	20.57463
4	0	0	4	1.918817	55.7276	21.30267	2	2 0	-1	1	3.510011	27.4588	11.59836
0	1	0	1	7.118295	1.97581	5.71172	4	0	-2	2	1.755005	11.4148	23.31771
0	2	0	2	3.559147	5.59593	11.43769	1	0	-1	1	5.446232	12.3383	7.46748
0	3	0	3	2.372765	1.38733	17.19250	2	2 0	-2	2	2.723116	52.8763	14.96692
0	4	0	4	1.779574	14.1963	22.99137	3	0	-3	3	1.815411	7.99568	22.53150
0	0	1	1	7.034205	5.31933	5.78006	0	1	-1	1	5.061394	3.24668	8.03617
0	0	2	2	3.517102	80.2575	11.57489	0	2	-2	2	2.530697	32.8314	16.11220
0	0	3	3	2.344735	52.062	17.39961	0	3	-3	3	1.687131	5.77121	24.26978
0	0	4	4	1.758551	109.986	23.27004							

$$\vartheta_n = \sin^{-1} \left(\frac{n\lambda}{2d_{hkl}} \right) = \sin^{-1} \left(\frac{\lambda}{2\frac{d_{hkl}}{n}} \right) = \sin^{-1} \left(\frac{\lambda}{2d_{nhnknl}} \right)$$
 Non-existing (nh, nk, nl) family of planes

Higher-order diffraction reas as first-order diffraction for a non-reticular plane

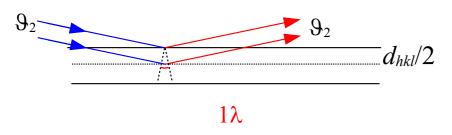
Second order diffraction from the family (*hkl*)

$$\vartheta_2 = \sin^{-1}(2\lambda/2d_{hkl})$$



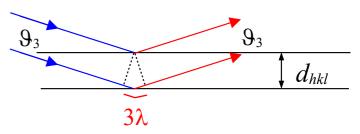
First order diffraction from a non-existing (2h2k2l) family

$$9_2 = \sin^{-1}[\lambda/(2d_{hkl}/2)]$$



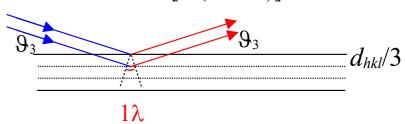
Third order diffraction from the family (*hkl*)

$$\Theta_3 = \sin^{-1}(3\lambda/2d_{hkl})$$

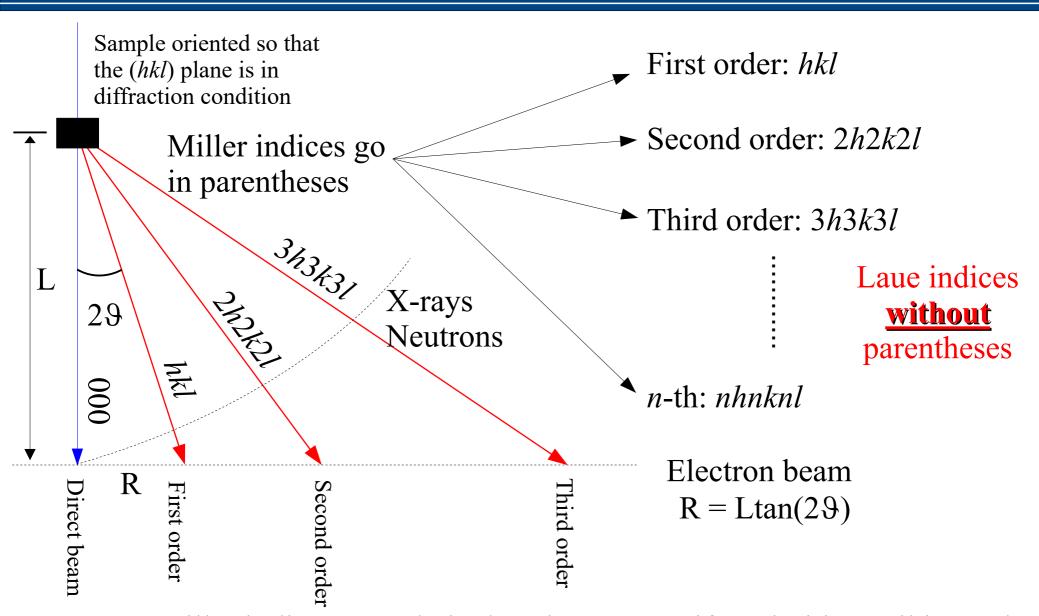


First order diffraction from a non-existing (3h3k3l) family

$$9_3 = \sin^{-1}[\lambda/(2d_{hkl}/3)]$$



Miller vs. Laue indices

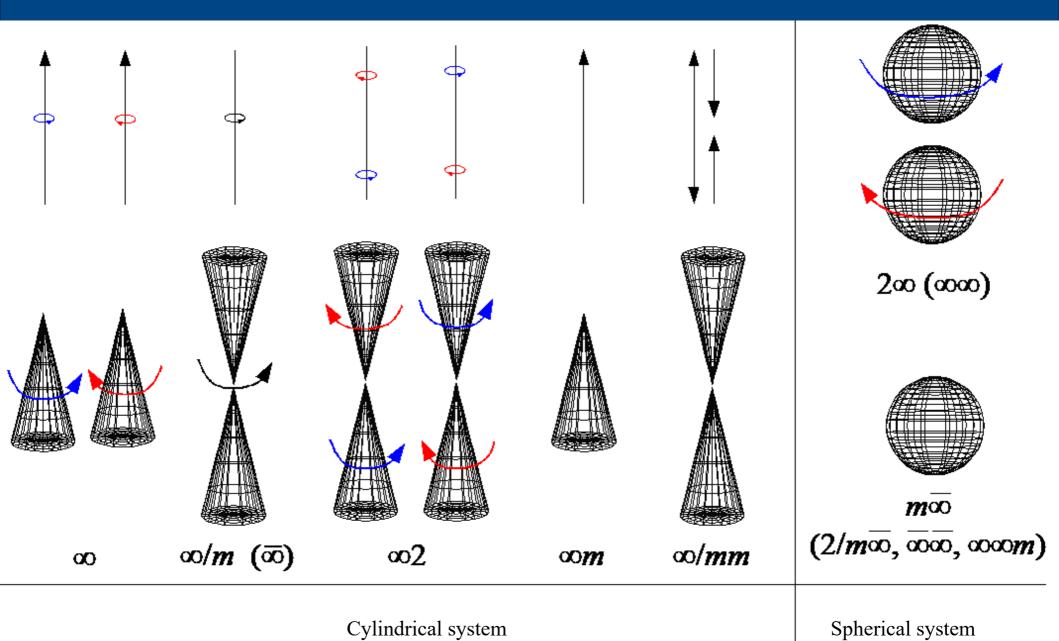


Warning: Miller indices are relatively prime ONLY if a primitive cell is used!

Application to crystal physics

Curie's law applied to crystals

Curie groups



Apply a field to a crystal, observe an effect

K: point group of the crystal

F: point group of the field applied to the crystal

G: point group of the resulting phenomenon

Necessary (but not sufficient) condition for the phenomenon to occur

$$G \supseteq K \cap F$$

Pyrolectric effect

Change of polarization in a dielectric undergoing a change of temperature

$$F = m\overline{\infty}$$
 \longrightarrow $K \cap F = K$

G (point group of an electric field) : ∞ m

Necessary condition for the phenomenon to occur

$$K \subset \infty m$$

The point group of the crystal must be compatible with the existence of a polar direction.

The 10 types of point groups satisfying this conditions are called pyroelectric groups

Piezoelectric effect

Change of polarization in a dielectric undergoing a compression

$$F = \infty/mm = \infty/m2/m$$

G (point group of the electric field) : ∞ m

Necessary condition for the phenomenon to occur

$$K \cap \infty/m2/m \subset \infty m$$

The intersection group of the point group of the crystal and of the point group of the compression must belong to one of the 10 pyroelectric types of point group.